On the Congruence $2^{n-2} \equiv 1(\bmod n)$

By A. Rotkiewicz

$$
\text { Abstract. There exist infinitely many positive integers } n \text { such that } 2^{n-2} \equiv 1(\bmod n) .
$$

In the monograph [5] I proposed the following problem (problem 18, p. 138): Let $a, k>1$ be fixed positive integers. Do there exist infinitely many composite n such that $n \mid a^{n-k}-1$?

Put $a=2, k=2$ in the above problem. Since by Fermat's theorem $2^{p-1} \equiv 1$ $(\bmod p)$ for odd primes p, if $2^{n-2} \equiv 1(\bmod n)$ and $n>2, n$ must be composite. R. Matuszewski and P. Rudnicki (with the aid of the computer K-202 in Warsaw) checked that below 4208 such integers do not exist.

The following theorem holds:
Theorem T. There exist infinitely many positive integers n such that $2^{n-2} \equiv 1$ $(\bmod n)$.

Proof. D. H. and Emma Lehmer ([1, p. 96] and [2, p. 139, F 10]) found the smallest (and still the only known) value $n>1$ for which $2^{n} \equiv 3(\bmod n)$. It is $n=4700063497=19 \cdot 47 \cdot 5263229$.

First we remark that if $2^{m} \equiv 3(\bmod m)$, then $n=2^{m}-1$ satisfies the congruence $2^{n-2} \equiv 1(\bmod n)$. Indeed if $\left(2^{m}-3\right) / m$ is a positive integer, then from the congruence $2^{m} \equiv 1\left(\bmod 2^{m}-1\right)$ it follows that $\left(2^{m}\right)^{\left(2^{m}-3\right) / m} \equiv 1\left(\bmod 2^{m}-1\right)$, $2^{2^{m}-3} \equiv 1\left(\bmod 2^{m}-1\right)$ and $2^{n-2} \equiv 1(\bmod n)$ for $n=2^{m}-1$. Thus $2^{n-2} \equiv 1$ $(\bmod n)$ for $n=2^{n_{0}}-1$, where $n_{0}=4700063497$.

Suppose now that $2^{n-2} \equiv 1(\bmod n)$, and $n>8$. Let p be a primitive factor of the number $2^{n-2}-1$ (a prime factor of $2^{n}-1$ is said to be primitive if it does not divide any of the numbers $2^{m}-1$ for $m=1,2, \ldots, n-1$. By a theorem of K. Zsigmondy [7] such a prime factor exists for any $n>6$ and is of the form $n t+1$).

Now we shall show that $n_{1}=n p$ is also a solution of the congruence $2^{n_{1}-2} \equiv 1$ $\left(\bmod n_{1}\right)$.

We have $p=2(n-2) k+1$, where k is a positive integer and $p \geqslant 2 n-3>n$ and $(p, n)=1$. Thus

$$
n p-2=n[2(n-2) k+1]-2=(n-2)(2 n k+1) .
$$

Received June 13, 1983.
1980 Mathematics Subject Classification. Primary 10A15.
Key words and phrases. Pseudoprime.

Hence $2^{n-2}-1 \mid 2^{n p-2}-1$, and since

$$
2^{n-2} \equiv 1(\bmod n), \quad 2^{n-2} \equiv 1(\bmod p), \quad(p, n)=1
$$

we have $n p \mid 2^{n p-2}-1$ and $n_{1}=n p$ satisfies the congruence $2^{n_{1}-2} \equiv 1\left(\bmod n_{1}\right)$.
This completes the proof of our theorem.
In our proof we use the number $n=2^{n_{0}}-1$, where $n_{0}=4700063497$. Thus n has more than $1.4 \cdot 10^{9}$ digits and this raises the following question:
What is the smallest solution of $2^{n-2} \equiv 1(\bmod n)$ with $n>2$? From every solution of the congruence $2^{m} \equiv 3(\bmod m)$ we can get a solution of the congruence $2^{n-2} \equiv 1(\bmod n)$, but we do not know whether the converse is true. This leaves the problem:

Do there exist infinitely many natural numbers n such that $2^{n} \equiv 3(\bmod n)$?
An old conjecture of R. L. Graham [1, p. 96] asserts that for all $k \neq 1$, there are infinitely many n such that $2^{n} \equiv k(\bmod n)$.

Remarks. I proved [6] that for every prime p and every positive integer a not divisible by p there exist infinitely many natural numbers n such that

$$
p \mid n \quad \text { and } n \mid a^{n-1}-1
$$

(so-called pseudoprimes to base a which are divisible by a prime p).
The following problem arises:
For what primes p does there exist a natural number n such that $n \mid 2^{n-2}-1$ and $p \mid n$?

Numbers $n>3$ for which $n \mid a^{n-3}-1$ holds for $(a, n)=1$ have been considered by D. C. Morrow [4], who has called them D numbers.

It is easy to see that every number of the form $n=3 p$, where p is a prime $\geqslant 3$, is a D number. A. Makowski [3] has proved that for any number $k \geqslant 2$ there exist infinitely many composite natural numbers n such that the relation $n \mid a^{n-k}-1$ holds for any integer a with (a, n) $=1$.
A. Makowski remarked also that one can prove in a similar way, as in Theorem T, that if $a^{n} \equiv k(\bmod n)$, then $a^{s-(k-1)} \equiv 1(\bmod s)$ for $s=a^{n}-1$.

Institute of Mathematics
Polish Academy of Sciences
ul. Sniadeckich 8
00-950 Warsaw, Poland
Warsaw University in Białystok
ul. Akademicka 2
15-424 Bialystok, Poland

[^0]
[^0]: 1. P. Erdös \& R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monographies de L'Enseignement Mathématique, No. 28, Genève, 1980.
 2. Richard K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York-HeidelbergBerlin, 1981, XVIII + 161 pp .
 3. A. MAKOwski, "Generalization of Morrow's D numbers," Simon Stevin, v. 36, 1962, p. 71.
 4. D. C. Morrow, "Some properties of D numbers," Amer. Math. Monthly, v. 58, 1951, pp. 324-330.
 5. A. Rotkiewicz, Pseudoprime Numbers and Their Generalizations, Student Association of the Faculty of Sciences, University of Novi Sad, 1972, i + 169 pp. MR 48 \# 8373.
 6. A. Rotkiewicz, "Un problème sur les nombres pseudopremiers," Indag. Math., v. 34, 1972, pp. 86-91.
 7. K. Zsigmondy, "Zur Theorie der Potenzreste," Monatsh. Math., v. 3, 1892, pp. 265-284.
